Effect of Hydrophobic Pollution on Response of Thermo-Sensitive Hydrogel

نویسندگان

  • Hideo Tajima
  • Fumiaki Sato
  • Kazuaki Yamagiwa
چکیده

Hydrogels are widely studied for chemical sensors. However, they are known to adsorb organic compound and metal ions. The adsorption abilities of hydrogels against organic compounds and metal ions will negatively affect the performance of a hydrogel based chemical sensor. To clarify the effect of hydrophobic pollution on swelling behavior of temperature-sensitive gel, the temperature-responses of spherical N,N-diethylacrylamide (DEAA) gel in phenol solution were evaluated using the collective polymer diffusion constant. Phenol was selected as a model hydrophobic pollution. The equilibrium radius of DEAA gel changed discontinuously at about 874 g/m 3 phenol solution, and the collective polymer diffusion constant decreased sharply between 874 and 916 g/m 3 , suggesting a “critical slowing down”. The phenol concentration difference EC was successfully used to correlate phenol concentration with the collective polymer diffusion constant. The correlation will be useful as an estimation of hydrogel response reduction associated with hydrophobic pollution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Composite Design for the Optimization of Hydrogel Based pH-Dependent Extraction and Spectrophotometric Determination of Mercury

In the present work a pH-dependent cloud point extraction procedure using pH-sensitive hydrogel polymer was applied for preconcentration and spectrophotometric determination of the Hg(II) as its Thio micher's ketone complex. Central composite design (CCD) and response surface method were applied to design the experiments and find out the optimum conditions. Four factors entitled concentration o...

متن کامل

pH Sensitive Hydrogel Based Acrylic Acid for Controlled Drug Release

Hydrogels, due to their unique potentials such as high-water content and hydrophilicity are interest for the controlled release of drug molecules. The present study aims to create a controlled-release system through the preparation and characterization of hydrogels based on pH-sensitive polymers such as poly (acrylic acid). Poly (acrylic acid), p(AA), hydrogel has been synthesized by radical po...

متن کامل

Thermo-Responsive Injectable MPEG-Polyester Diblock Copolymers for Sustained Drug Release

Thermo-responsive diblock copolymers composed of hydrophilic methoxy poly(ethylene glycol) (MPEG) and hydrophobic biodegradable polyesters were prepared for application as injectable drug delivery systems, because they show a thermo-responsive sol-to-gel transition, especially around body temperature, when dispersed in aqueous solutions. The thermogelling hydrogels formed by hydrophobic aggrega...

متن کامل

Computational Study of pH-sensitive Hydrogel-based Microfluidic Flow Controllers

This computational study investigates the sensing and actuating behavior of a pH-sensitive hydrogel-based microfluidic flow controller. This hydrogel-based flow controller has inherent advantage in its unique stimuli-sensitive properties, removing the need for an external power supply. The predicted swelling behavior the hydrogel is validated with steady-state and transient experiments. We then...

متن کامل

Application of Imidazolium based ionic liquid Nano-emulsions for the removal of H2S from crude oil

Hydrogen sulfide is one of the most dangerous contaminants in crude oil and natural gas that have to be removed prior to the transfer and refining. In this study, hydrophobic ionic liquid, i.e. 1-ethyl-3-methylimidazolium methylflour, [EMIM] [NTf2], was used as scavenger for the reduction of the H2S. Due to its ionic nature, [EMIM] [NTf2] forms nanoemulsion in crude oil media and hence can diss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013